Contents

List of figures xi
List of plates xvi
Foreword by Sir Anthony Kenny (President of the British Academy, 1989–93) xvii
Acknowledgements xx

Introduction

1. Perceptions, Sensations and Cortical Function: Helmholtz to Singer 1

 1.1 Visual Illusions and their Interpretation by Cognitive Scientists 4
 1.1.1 Misdescription of visual illusions by cognitive scientists 9
 1.2 Gestalt Laws of Vision 10
 1.3 Split-Brain Commissurotomy; the Two Hemispheres may Operate Independently 11
 1.3.1 Misdescription of the results of commissurotomy 13
 1.3.2 Explaining the discoveries derived from commissurotomies 13
 1.4 Specificity of Cortical Neurons 15
 1.4.1 Cardinal cells 18
 1.4.2 Misdescription of experiments leading to the conception of cardinal cells 20
 1.5 Multiple Pathways Connecting Visual Cortical Modules 22
 1.6 Mental Images and Representations 26
 1.6.1 Misconceptions about images and representations 28
 1.7 What and Where Pathways in Object Recognition and Maps 30
 1.8 Misuse of the Term ‘Maps’ 31
 1.9 The Binding Problem and 40 Hz Oscillations 32
 1.9.1 Misconceptions concerning the existence of a binding problem 37
 1.9.2 On the appropriate interpretation of synchronicity of neuronal firing in visual cortex 38
 1.10 Images and Imagining 39
 1.10.1 Misconceptions concerning images and imagining 41
Contents

2. Attention, Awareness and Cortical Function: Helmholtz to Raichle 44
 2.1 The Concept of Attention 44
 2.2 The Psychophysics of Attention 46
 2.3 Neuroscience of Attention 55
 2.3.1 Attention and arousal 56
 2.3.2 Selective attention 58
 2.4 Attention Related to Brain Structures 60
 2.4.1 Superior colliculus 60
 2.4.2 Parietal cortex 67
 2.4.3 Visual cortex 71
 2.4.4 Auditory cortex 72
 2.5 Conclusion 74

3. Memory and Cortical Function: Milner to Kandel 77
 3.1 Memory 77
 3.1.1 The hippocampus is required for memory, which decays at two different rates 77
 3.1.2 Memory is of two kinds: declarative and non-declarative 77
 3.1.3 Cellular and molecular studies of non-declarative memory in invertebrates 80
 3.1.4 Declarative memory and the hippocampus 82
 3.1.5 Long-term potentiation (LTP) of synaptic transmission in the hippocampus 84
 3.1.6 Cellular and molecular mechanisms of declarative memory in the hippocampus 93
 3.1.7 Summary 94
 3.2 Memory and Knowledge 96
 3.2.1 Memory 99
 3.2.2 Memory and storage 103
 3.3 The Contribution of Neuroscience to Understanding Memory 113

4. Language and Cortical Function: Wernicke to Levelt 115
 4.1 Introduction: Psycholinguistics and the Neuroanatomy of Language 115
 4.2 The Theory of Wernicke/Lichtheim 120
 4.2.1 Introduction: Wernicke 120
 4.2.1.1 Images of sensations 121
 4.2.1.2 Movement images 122
 4.2.1.3 Voluntary movement 123
 4.2.1.4 Sound images and language 125
 4.2.1.5 Language acquisition, words and concepts 126
Contents

4.2.2 Lichtheim’s concept centre
4.2.3 Concepts and representations
4.2.4 Conclusion
4.3 The Mental Dictionary and its Units: Treisman
4.4 The Modular Study of Word Recognition and Reading Aloud: Morton
4.4.1 The model system
4.4.2 The cognitive system
4.4.3 Thought units
4.4.4 Computational studies
4.5 The Modular Study of Fluent Speech: Levelt
4.5.1 The model study
4.5.2 Development of the model system
4.6 The Functional Neuroanatomy of Language Comprehension
4.6.1 Attention to visual compared with semantic aspects of words
4.6.2 Auditory compared with visual presentation of words
4.6.3 Attention to the semantic as compared to the syntactic aspect of a sentence
4.7 The Functional Neuroanatomy of Speech
4.7.1 Speech
4.7.2 Spoken action words and colour words
4.7.3 Naming animals and tools
4.7.4 Speaking with strings of words compared with single words
4.7.5 Word repetition
4.8 The Functional Neuroanatomy that Underpins Psycholinguistic Accounts of Language

5. Emotion and Cortical-Subcortical Function: Darwin to Damasio
5.1 Introduction
5.2 Darwin
5.3 Cognitive versus Precognitive Theories for the Expression of Emotions
5.3.1 On physiological measurements of emotional responses
5.3.2 Involvement of the amygdala and the orbitofrontal cortex in the emotional responses to faces
5.4 The Amygdala
5.4.1 Faces expressing different emotions and the amygdala: PET and fMRI
5.4.2 Behavioural studies involving face recognition following damage to the amygdala
5.4.3 Fear conditioning and the amygdala

128
129
130
130
132
132
135
140
141
141
145
147
147
149
149
152
152
153
154
158
161
162
164
164
167
169
173
174
174
174
179
181
5.4.4 Is cognitive appraisal an important ingredient in emotional experience? LeDoux's interpretations of his experiments on the amygdala 181
5.4.5 'Fear' is unrepresentative of the emotions 182
5.5 The Orbitofrontal Cortex 183
5.5.1 Behavioural studies involving face recognition following damage to the orbitofrontal cortex 183
5.5.2 The orbitofrontal cortex and face recognition: PET and fMRI 183
5.5.3 The orbitofrontal cortex and the satisfying of appetites: Rolls's interpretation of his experiments on the orbitofrontal cortex 186
5.5.4 Misconceptions about emotions and appetites 187
5.6 Neural Networks: Amygdala and Orbitofrontal Cortex in Vision 187
5.6.1 Amygdala 187
5.6.2 Orbitofrontal cortex 190
5.7 The Origins of Emotional Experience 191
5.7.1 The claims of LeDoux 191
5.7.2 The claims of Rolls 193
5.7.3 The claims of Damasio, following James 193
5.7.4 Misconceptions concerning the somatic marker hypothesis of James/Damasio 194

6.1 The Ventricular Doctrine, from Galen to Descartes 199
6.1.1 Galen: motor and sensory centres 199
6.1.2 Galen: the functional localization of the rational soul in the anterior ventricles 201
6.1.3 Nemesius: the attribution of all mental functions to the ventricles 201
6.1.4 One thousand years of the ventricular doctrine 203
6.1.5 Fernel: the origins of neurophysiology 206
6.1.6 Descartes 208
6.2 The Cortical Doctrine: from Willis to du Petit 214
6.2.1 Thomas Willis: the origins of psychological functions in the cortex 214
6.2.2 The cortex 100 years after Willis 216
6.3 The Spinal Soul, the Spinal Sensorium Commune, and the Idea of a Reflex 219
6.3.1 The spinal cord can operate independently of the enkephalon 219
6.3.2 Bell and Magendie: the identification of sensory and motor spinal nerves 222
6.3.3 Marshall Hall: isolating sensation from sense-reaction in the spinal cord 223
Contents

6.3.4 Elaboration of the conception of the 'true spinal marrow' 225
6.3.5 Implications of the conception of a reflex for the function of the cortex 227
6.4 The Localization of Function in the Cortex 227
6.4.1 Broca: the cortical area for language 227
6.4.2 Fritsch and Hitzig: the motor cortex 227
6.4.3 Electrical phenomena in the cortex support the idea of a motor cortex 231
6.5 Charles Scott Sherrington: the Integrative Action of Synapses in the Spinal Cord and Cortex 231
6.5.1 Integrative action in the spinal cord 231
6.5.2 The motor cortex 236

7. Conceptual Presuppositions of Cognitive Neuroscience 237
7.1 Conceptual Elucidation 237
7.2 Two Paradigms: Aristotle and Descartes 240
7.3 Aristotle’s Principle and the Mereological Fallacy 241
7.4 Is the Mereological Fallacy Really Mereological? 243
7.5 The Rationale of the Mereological Principle 245
7.5.1 Consciousness 245
7.5.2 Knowledge 246
7.5.3 Perception 247
7.6 The Location of Psychological Attributes 250
7.7 Linguistic Anthropology, Auto-anthropology, Metaphor and Extending Usage 253
7.8 Qualia 260
7.9 Enskulled Brains 262
7.10 Cognitive Neuroscience 262

References 264
Index 281

Plate section falls between pages 140 and 141