next up previous contents
Next: 3 Relaxation Up: 1 Introduction Previous: 1 Jacobi iteration   Contents

2 Gauss-Seidel iteration

If the vector $ {\rm\bf x}=\{x_1,\ldots ,x_m\}$ we used Jacobi type iteration then when we come to evaluate $ x_s^{(k+1)}$ we have already evaluated $ x_1^{(k+1)},\ldots ,x_{s-1}^{(k+1)}$, so we could evaluate the $ s^{th}$ row of $ {\rm\bf L}{\rm\bf x}^{(k+1)}$. In matrix motation

$\displaystyle {\rm\bf x}^{(k+1)}={\rm\bf L}{\rm\bf x}^{(k+1)}+{\rm\bf U}{\rm\bf x}^{(k)}+{\rm\bf D}^{-1}{\rm\bf f},$ (136)

$\displaystyle {\rm\bf x}^{(k+1)}=({\rm\bf I}-{\rm\bf L})^{-1}({\rm\bf U}{\rm\bf x}^{(k)}+{\rm\bf D}^{-1}{\rm\bf f}),$ (137)

so that the iteration matrix is

$\displaystyle {\rm\bf H}=({\rm\bf I}-{\rm\bf L})^{-1}{\rm\bf U},\ \ {\rm Gauss-Seidel\ iteration\ matrix}.$ (138)



Last changed 2000-11-21