next up previous contents
Next: 1 Jacobi iteration Up: 2 Iterative Methods for Previous: 2 Iterative Methods for   Contents

1 Introduction

We have seen that discretisation of PDE's leads naturally to a matrix equation for a vector of unknowns which might represent nodal values of a function, local averages of a function or coefficients in an expanion in terms of a set of basis functions which generate an approximation space. In most real problems the dimension of the coefficient matrix is so large that Gauss elimination is not a feasible option, so that an interative method must be used to approximate the solution vector. We take as our model problem

$\displaystyle {\rm\bf A}{\rm\bf x}={\rm\bf f},$ (129)

where $ {\rm\bf A}$ is a `non-singular $ m\times m$ matrix. For any $ m\times m$ matrix $ {\rm\bf B}$ we can write

$\displaystyle {\rm\bf B}{\rm\bf x}+({\rm\bf A}-{\rm\bf B}){\rm\bf x}={\rm\bf f},$ (130)

so that

$\displaystyle {\rm\bf x}=({\rm\bf I}-{\rm\bf B}^{-1}{\rm\bf A}){\rm\bf x}+{\rm\bf B}^{-1}{\rm\bf f},$ (131)

and we can seek an iterative solution by the algorithm $ {\rm\bf x}^{(0)}={\rm\bf0}$,

$\displaystyle {\rm\bf x}^{(k+1)}=({\rm\bf I}-{\rm\bf B}^{-1}{\rm\bf A}){\rm\bf x}^{(k)}+{\rm\bf B}^{-1}{\rm\bf f}.$ (132)

We will use the notation

$\displaystyle {\rm\bf A}={\rm\bf D}-{\rm\bf E}-{\rm\bf F}={\rm\bf D}({\rm\bf I}-{\rm\bf L}-{\rm\bf U}),$ (133)

where $ {\rm\bf E}$, $ {\rm\bf L}$ are strict lower triangular matrices and $ {\rm\bf F}$, $ {\rm\bf U}$ are strict upper triangular matrices and $ {\rm\bf D}$ is a diagonal matrix.



Subsections
next up previous contents
Next: 1 Jacobi iteration Up: 2 Iterative Methods for Previous: 2 Iterative Methods for   Contents
Last changed 2000-11-21